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Abstract Intermediate states of electromagnetic field are reviewed. It is a type of the cor-
related two-mode states (converter state). Based on the resonant ion-cavity interaction, we
propose a scheme to generate these states revealing their connection with the converter state.
The practical feasibility of this method is also discussed. We discuss nonclassicality of a fi-
nite dimensional pair coherent states in terms of sub-Poissonian photon statistics as well as
the negativity of the Wigner function after deriving the analytic expression for the Wigner
function. We explore a superposition of two finite dimensional pair coherent states. We show
that such states possess inherent nonclassical properties such as sub-Poissonian distribution,
anti-correlation between the two modes and violation of Cauchy-Schwarz inequalities. The
s-parameterized characteristic function (CF) is considered. The phase distribution in the
framework of Pegg and Barnett formalism, W -function and Q-function are discussed. Fur-
thermore, a two-level atom in interaction with a two-mode quantized electromagnetic fields
besides a frequency converter interaction initially prepared in an entangled two-mode co-
herent state is presented. Exact solution of the wave function in the Schrödinger picture is
obtained. Some statistical aspects of this model are presented. The results are employed to
perform a careful investigation of the temporal evolution of the atomic inversion, entropy
squeezing and variance squeezing. General conclusions reached are illustrated by numerical
results.
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1 Introduction

Quantum entanglement is considered to be basic prerequisite for teleportation of quantum
state, quantum communication, quantum computing, quantum information processing and
testing quantum mechanics experimentally [1–7]. Theoretical and experimental studies on
quantum communication through the use of nonlocal correction of entangled states have
shown great promise for establishing new kinds of information processing with no classical
counterparts [1]. One example is the concept of quantum teleportation [4], where as an
entangled state was built from two single-mode phase squeezed vacuum states combined at
a beam splitter [2]. Other examples of the application of entanglement to communications
include dense coding [7] and quantum cryptographe [3]. These extensive studies have paved
a way towards a variety of useful quantum informational devices.

Information theory cannot be separated from its physical representation, it is always to
be stored in some physical systems, manipulated by some physical processes. This observa-
tion has a number of consequences for information theory. Perhaps, the most striking one is
that, it makes a big difference whether the information is stored and processed in classical
or quantum mechanical systems [8–11]. Until now this has always been done using systems
governed by classical physics, e.g., one bit of information in a system that could take either
of two states [12–15]. In a quantum computer information would be stored in quantum me-
chanical two-state systems, so-called qubits. The most peculiar feature of a qubit (and all
quantum systems) is the existence of superpositions: according to the superposition princi-
ple (experimentally well established), a qubit, which can be in two distinct physical states
can also be in an arbitrary coherent superposition of these states, representing in a certain
sense both numbers at the same time. Moreover, the superposition principle is the basis for
the quantum phenomenon of entanglement which is of particular importance for quantum
communication. The study of entanglement has turned into a very fruitful field of research,
revealing many strange features of quantum mechanics. Various types of entanglement have
been discovered [16–18].

It is important to point out that the increased insight into the nonclassical properties of
quantum states, they play a significant role in various physical applications. For instance,
multimode entangled states serve as necessary resources in multiuser quantum communica-
tion network (see, e.g., [19–21]). Many new types of nonclassical states have been designed
[22] according to the fundamental principles of quantum optics. Coherent states, their vari-
ants and generalizations have been extensively studied over the last four decades. A com-
prehensive review of this development can be found in Refs. [23, 24]. Subsequently the
notion was generalized in various ways. Motivations to generalize the concept have arisen
from symmetry considerations [25], dynamics [26] and algebraic aspects [27]. A gener-
alized class of the conventional coherent state, called the nonlinear coherent states or the
f -coherent states [28–31], has been constructed.

Pair coherent states (PCS) are regarded as an important type of correlated two-mode
states, which possess prominent nonclassical properties. Such states denoted by |ζ, q〉 are
eigenstates of the operator (âb̂) and the number difference (n̂a − n̂b) where â and b̂ are the
annihilation operators of the field modes and n̂a = â†â and n̂b = b̂†b̂. These states satisfy

âb̂|ζ, q〉 = ζ |ζ, q〉 and (n̂a − n̂b)|ζ, q〉 = q|ζ, q〉. (1)

The experimental realization of such nonclassical states is of practical importance. Agarwal
[32–35] suggested that the optical (PCS) can be generated via the competition of 4-wave
mixing and two-photon absorption in a nonlinear medium. Another scheme has been sug-
gested for generating vibrational pair coherent states via the quantized motion of a trapped
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ion in a two-dimensional trap [36]. In addition to various kinds of known nonclassical states
[37, 38], a new one called a trio coherent state (TCS) has been introduced [39–43]. These
states have been investigated and the even and odd trio coherent states have been studied for
antibunching and Cauchy-Schwarz inequalities [42].

It is important to point out that the increased insight into the dynamics of the two-level
systems (JCM) model [43]. It is has been generalized in many different ways. One such way
is the multiphoton generalization [44] described by the following Hamiltonian (� = 1),

H = ωa†a + ω0

2
Sz + λ

(
S12a

k + a†kS21

)
, (2)

where k is a positive integer and represents the multiplicity of the photons, λ is the cou-
pling constant, ω0 and ω are the atomic transition frequency and resonant mode frequency
respectively. The annihilation (creation) operator a(a†) of the field mode for which the
commutation relation [a, a†] = 1 is satisfied, while the operators Sij are the generators of
the SU(2) group with they satisfy the commutation relation [Sij , Skl] = Silδjk − Skiδli and
Sz = S11 − S22. There are a huge number of papers that appeared in the literature consid-
ering this model in great detail. Most of these papers concentrate on statistical aspects as
well as the dynamics of the model. However, to meet the experimental realization, there are
several attempts to generalize and modify this model [44]. For instance, the consideration
of multimode and multiphoton appears in [45, 46] instead of single mode and single pho-
ton. In modeling typical experiments one considers a three-level atomic system interacting
with two laser fields [47, 48] and reduces it to a two-level problem on the assumption of
large detunings by using the adiabatic elimination [49]: the effective Hamiltonian obtained
in this way has the form of the usual Jaynes-Cummings model. Adiabatic elimination has
been criticized on several grounds [50–53], however, other methods of deriving effective
Hamiltonians exist [54–57].

The aim of this paper is to review some recent work on Entangled finite dimensional
pair coherent states and the theoretical investigations and of the experimental observations
concerning the dynamical features of these states related dynamical systems. The physical
situations which we shall refer to, belong to the experimental domains of cavity quantum
electrodynamics and of trapped ion physics. The relative simplicity of the ion-trap model
and the ease with which it can be extended through analytic expressions or numerical com-
putation continue to attract attention. The physical scenario relative to the problems we shall
face involves two trapped ions interacting with a laser field. The work reported here is orig-
inally motivated by several connections between quantum entanglement states and quantum
information theory.

2 Finite Dimensional Pair Coherent States

In contrast to the pair coherent state finite dimensional PCS is defined as the eigenstate of

the pair operator (â†b̂ + ζ q+1(âb̂†)q

(q!)2 ) for the two modes, and the sum of the photon number

operators for the two modes (â†â + b̂†b̂), namely:

(
â†b̂ + ζ q+1(âb̂†)q

(q!)2

)
|ζ, q〉F = ζ |ζ, q〉F ,

(
â†â + b̂†b̂

)|ζ, q〉F = q|ζ, q〉F ,

(3)
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where the parameter ζ is a complex variable while the parameter q is non-negative integer
number. The state takes the form,

|ζ, q〉F = Nq

q∑

n=0

ζ n

√
(q − n)!

q!n! |q − n,n〉, (4)

in the two mode states |na,nb〉 = |na〉 ⊗ |nb〉, where |ns〉 is the Fock state for the mode s

(s = a or b) and the normalization constant Nq is given by

Nq =
[

q∑

n=0

|ζ |2n (q − n)!
q!n!

]−1
2

= (
1F0

(−q,−|ζ |2))−1
2 , (5)

where 1F0 is a generalized hypergeometric function. Because of the appearance of the op-
erators â†b̂ or âb̂† in this form and the finite sum it may be legitimate to call it a finite
dimensional pair coherent state.

In what follows we address the problem of constructing and discussing some properties
of these correlated two mode states of (4). The results that we are going to present stem
from a new approach to the above state. Subsequently we shall examine the sub-Poissonian
distribution and the phase properties of these states.

2.1 Generation Scheme

In this section we are concerned with the context of ion trap. Since ions can be trapped very
efficiently and their entanglement with the environment is extremely weak, trapped ions have
advantages for many purposes such as preparing various types of nonclassical states (see e.g.
[58–64]), simulating nonlinear interactions [65], demonstrating quantum phase transitions
[66, 67], establishing quantum search algorithms [68] and so on. The most promising merit
of trapped ion systems is perhaps the possibility to implement scalable quantum computers
[69] in which a number of ions are involved [70–72]. Nevertheless, many tasks can still
be done even with a single ion. For instance, a controlled-NOT quantum logic gate can be
performed just by a single trapped ion [73–76]. Here we propose an experimental scheme
to generate the state of (4) in the vibronic motion of an ion which is trapped in real two-
dimensional (2D) space.

The specification of the functions (â†b̂ + ζ q+1(âb̂†)q

(q!)2 ) is subject to the generation schemes

within the framework of the motion of a trapped ion in a 2-dimensional harmonic potential.
Consider a single ion trapped in a 2-dimensional harmonic potential with frequencies ν1 (in
the x-direction), ν2 (in the y-direction) in interaction with three laser fields propagating in
the same direction tuned respectively to the electronic transition ω0 of the ion and to the
vibrational side band of frequency taken as follows: The first vibrational side band has the
frequency (ν2 − ν1) lower than that transition, but the second vibrational side band has the
frequency q (ν1 − ν2) higher than that transition. The Hamiltonian of this system is written
as

H = ν1â
†â + ν2b̂

†b̂ + ω0

2
σ̂z

+ μ.
[{

E0e
i(k1x̂+k2ŷ−ω0t+φ0) + E1e

i(k1x̂+k2ŷ−[ω0−(ν2−ν1)t]+φ1)

+ E2e
i(k1x+k2y−[ω0−q(ν1−ν2)]t+φ2)

}
σ̂+ + h.c.

]
. (6)
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We denote by â and b̂ the annihilation operators of the quantized bosons that describe the
vibrational motion of the center of mass of trapped ion in the two dimensions x and y. The
operators σ̂+(σ̂−) and σ̂z are the raising (lowering) and the population inversion operators of
the electronic two-level ion which satisfy [σ̂+, σ̂−] = σ̂z, [σ̂z, σ̂±] = ±2σ̂±. μ is the dipole
matrix element and ks (s = 1,2) are the components of the wave vectors of the driving laser
fields of amplitudes E0, E1 and E2. The quantized center-of-mass position x̂ and ŷ can be
written as

x̂ = 	x
(
â + â†

)
, ŷ = 	y

(
b̂ + b̂†

)
, (7)

with 	x and 	y are the standard deviation for x̂ and ŷ in the ground state of the harmonic
potential. We may use a vibrational rotating wave approximation and neglect the terms with
fast oscillations [36, 77]. Thus the interactions Hamiltonian is simplified to

Hint = exp

[
− (η2

1 + η2
2)

2

][

σ+

{

�0 exp(iφ0)
∑

m1,m2

(iη1)
2m1(iη2)

2m2

(m1!)2(m2!)2
â†m1 âm1 b̂†m2 b̂m2

+ �1 exp(iφ1)
∑

m1,m2

(iη1)
2m1+1(iη2)

2m2+1

m1!(m1 + 1)!m2!(m2 + 1)! â
†m1+1âm1 b̂†m2 b̂m2+1

+ �2 exp(iφ2)
∑

m1,m2

(iη1)
2m1+q(iη2)

2m2+q

m1!(m1 + q)!m2!(m2 + q)! â
†m1 âm1+q b̂†m2+q b̂m2

}

+ h.c.

]

.

(8)

|�0| = |μ.E0|, |�1| = |μ.E1| and |�2| = |μ.E2| are the Rabi frequencies related to the
different laser fields and ηs are the Lamb-Dicke parameters, where η1 = k1	x, η2 = k2	y

[11]. It should be noted that n̂1 + n̂2 is a constant of motion for the Hamiltonian (8). The
terms between parenthesis in (8) can be treated as follows: In the Lamb-Dicke limit where
the vibrational amplitude of the ions is much smaller than the laser wavelength where it is
sufficient to keep the first term in each series appearing in (8) and thus (8) is simplified to

Hint = λ

(
â†b̂ + ζ q+1(âb̂†)q

(q!)2
− ζ

)
σ̂+ + h.c., (9)

where λ = −�1η1η2 exp[− (η2
1+η2

2)

2 + iφ1] and ζ = �0 exp i(φ0−φ1)

�1η1η2
, while �2 is related to the

other parameters through the formula �2 = ζ q+1�1
(−1)q−1(η1η2)q−1 . Therefore the parameters ζ and

q are controlled by the amplitudes and phases of the applied laser fields and the Lamb-Dicke
parameters. In the experiments performed on 9Be+ ion with laser beam containing ≈ 1 nw

of power at 313 nm, the Lamb-Dicke parameter η is calculated to be ≈ 0.23. Thus using
this estimate for η1 and η2 puts η1η2 ≈ 0.05. For the values |ζ | ≈ η1η2 and for arbitrary q ,
then �0 ∼ �2 ∼ �1(η1η2)

2 which gives �0 ∼ �2 ∼ �1
400 . Thus the value for E1 has to be two

orders of magnitude higher than E0 and E2. Since �i = μ.Ei = μ Ei cos(θi) (i = 0,1,2)

the angle θi can be used to reduce the estimate for Ei . This means that moderate values
for E0 and E2 and strong value of E1 are sufficient to produce such state with arbitrary q

for |ζ | ≈ η1η2. However for larger values of |ζ | then the number q has to be restricted to
reasonable values for appropriate laser fields.
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The master equation for the density matrix under spontaneous emission with energy dis-
sipation rate γ is given by [36]

∂ρ̂

∂t
= −i[Ĥint, ρ̂] + γ

2
[2σ̂−ρ̂σ̂+ − σ̂+σ̂−ρ̂ − ρ̂σ̂+σ̂−]. (10)

The stationary solution ρ̂s for this master equation is obtained by setting ∂ρ̄

∂t
= 0. A solution

ρ̂s can be given as

ρ̂s = |g〉|ζ 〉〈ζ |〈g|, (11)

with |g〉 the electronic ground state (σ̂−|g〉 = 0, 〈g|σ̂+ = 0) and |ζ 〉 is the vibration eigen-
state that satisfies Ĥint|ζ 〉 = 0. It is straightforward to show that |ζ 〉 belongs to the class
of states considered in (4). To tailor the Hamiltonian of any nonlinear multi-quanta JCM a
scheme of using a number of lasers has been presented to produce such interaction [78, 79].
It is to be mentioned that the nonlinear JCM has been realized experimentally [80, 81].

2.2 Relations to Other States

2.2.1 Relation to SU(2) Group

The Schwinger angular-momentum operators [82] are defined as

Ĵx = (â†b̂ + b̂†â)

2
, Ĵy = (â†b̂ − b̂†â)

2i
, Ĵz = (â†â − b̂†b̂)

2
(12)

which are the generators of the Lie algebra of SU(2) and satisfy [Ĵx , Ĵy] = iĴz, [Ĵy , Ĵz] =
iĴx and [Ĵz, Ĵx] = iĴy . It is useful to introduce the following operators

Ĵ+ = Ĵx + iĴy = â†b̂, Ĵ− = Ĵx − iĴy = âb̂†. (13)

Furthermore, the operator

Ĉ2 = Ĵ 2
z + 1

2
(Ĵ+Ĵ− + Ĵ−Ĵ+) (14)

which is just the square of the total angular momentum, commutes with all the generators
of the Lie algebra. The unitary irreducible representations of the SU(2) are just the familiar
angular momentum states |j,m〉 satisfying the relations

Ĉ2|j,m〉 = j (j + 1)|j,m〉, Jz|j,m〉 = m|j,m〉,

Ĵ±|j,m〉 = √
(j ∓ m)(j ± m + 1)|j,m ± 1〉, j = 1

2
,1,

3

2
,2, . . . ,

m = −j,−j + 1, . . . , j. (15)

Note that the representations are finite dimensional, the dimension for a given j being 2j +1.
Now we solve the following equation

(
Ĵ− + ζ 2j+1

((2j)!)2
(Ĵ+)2j

)
|ζ 〉 = ζ |ζ 〉 (16)

which leads to in this is the same form of (4) when we label q = 2j and identify the states
{|j,m − j 〉} as the states {|q − n,n〉}.
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2.2.2 Exponential Form

The state |ζ, q〉 of (4) may be cast as

|ζ, q〉F = Nq

q∑

s=0

ζ n (q − s)!âs b̂†s

q!s! |q,0〉. (17)

One can show that

[
g(n̂a, n̂b)âb̂†

]s = âs b̂†s

s∏

m=1

g(n̂a − m, n̂b + m). (18)

Here g(n̂a, n̂b) is an arbitrary function of n̂a and n̂b. Then using (18) with g(n̂a, n̂b) = ζ

(n̂a+1)
,

the state |ζ, q〉 is finally written in the exponential form

|ζ, q〉F = Nq

∞∑

s=0

[ ζ

(n̂a+1)
âb̂†]s

s! |q,0〉 = Nq exp

[
ζ

(n̂a + 1)
âb̂†

]
|q,0〉.

2.3 Nonclassical Effects

The experimental feasibility of models involving more than one mode multi-mode in a
high-Q cavity has been more or less considered by many authors [83–86]. It is worthwhile
remarking that investigating such models goes beyond an intrinsic theoretical interest be-
cause a new generation of high-Q electromagnetic cavities, covering a wide wave-length
range, are today realizable [83–87]. Thus, in the following subsections we will investigate
the influence of the controlling parameters q on the nonclassical behavior of the cavity field
where, in particular, the sub-Poissonian distribution and the phase distribution are empha-
sized.

2.3.1 Sub-Poissonian Distribution

We devote the following discussion to consider an example of the nonclassical effect that
is the phenomenon of sub-Poissonian distribution. This phenomenon can be measured by
photon detectors based on photoelectric effect. It is well known that, sub-Poissonian statis-
tics is characterized by the fact that the variance of the photon number 〈(	n̂i)

2〉 is less than
the average photon number 〈â†

i âi〉 = 〈n̂i〉. This can be expressed by means of the normal-
ized second-order correlation function for the mode z in a quantum state |ζ, q〉F [88, 89] as
follows:

g(2)
z (ζ ) = F 〈ζ, q|n̂z(n̂z − 1)|ζ, q〉F

F 〈ζ, q|n̂z|ζ, q〉2
F

, ∀z = a, b, (19)

where

F 〈ζ, q|n̂a(n̂a − 1)|ζ, q〉F = N2
q

q∑

n=0

|ζ |2(n)(q − n)!
q!n! (q − n)(q − n − 1),

F 〈ζ, q|n̂b(n̂b − 1)|ζ, q〉F = N2
q

q∑

n=0

|ζ |2(n)(q − n)!
q!n! n(n − 1),

(20)
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Fig. 1 The sub-Poissonian function as a function of |ζ |, (a) for mode a, (b) for mode b, where the solid
curve for q = 2, the dot curve for q = 3, the dash curve for q = 4 and the dashdot curve for q = 5

and

F 〈ζ, q|n̂a|ζ, q〉F = N2
q

q∑

n=0

|ζ |2n(q − n)!
n! (q − n),

F 〈ζ, q|n̂b|ζ, q〉F = N2
q

q∑

n=0

|ζ |2n(q − n)!
n! n.

(21)

The function g(2)
z (ζ ) given by (19) for the mode z serves as a measure of the devia-

tion from the Poissonian distribution that corresponds to coherent states with g(2)
z (ζ ) = 1.

If g(2)
z (ζ ) < 1 (> 1), the distribution is called sub (super)-Poissonian, if g(2)

z (ζ ) = 2 the
distribution is called thermal and when g(2)

z (ζ ) > 2 it is called super-thermal.
To reveal the physical content of the state, we plot g(2)

a (ζ ) against |ζ |. First when we
take q = 0 or 1 the function g(2)

a (ζ ) = 0 due to the fact that the states present are either
vacuum or one photon and for both of them g(2)(ζ ) is zero. For the effectiveness we take
q = 2 it is to be observed that the state starts at g(2)

a (0) = 0.5 and for a short interval of
|ζ | the function g(2)

a (ζ ) has full sub-Poissonian distribution. Also super-Poissonian behavior
appears for higher values of ζ and its behavior almost like the thermal distribution as ob-
served in Fig. 1(a). In Fig. 1(a) we take q = 3,4,5, we find that the function starts at 2

3 , 3
4

and 4
5 respectively. This is because it looks as that we have the Fock state |q〉 present in this

case when ζ → 0 and g(2)
a (ζ ) = q−1

q
. In this basis, we see that g(2)

a (ζ ) < 1 for a short range
of ζ . When the parameter ζ is increased further, the state |ζ, q〉 exhibits super-Poissonian
behavior and for large values of |ζ | the state reaches super-thermal state behavior because
for ζ → ∞ we get these limit g

(2)
b (ζ ) = 4(q−1)

q
. The nonclassical nature of the state is appar-

ent, when one takes the value q = 2 the function g(2)
a (ζ ) < 1 as shown in Fig. 1(a), but when

we take q > 2 the function g(2)
a (ζ ) > 2 for higher values of ζ .

To simplify the visual comparison we finally consider the function g
(2)
b (ζ ) for the second

mode. In this case q takes the values 2, 3, 4 and 5 we find that the function g
(2)
b (ζ ) starts at 2,

3
2 , 4

3 and 5
4 respectively. Because of the condition between the two modes, thus when we take

the limits as ζ → 0 we get these limit g
(2)
b (ζ ) = q

q−1 . We see that g
(2)
b (ζ ) has a decreasing

trend and so for sufficiently large values of |ζ | it shows sub-Poissonian behavior because for



Int J Theor Phys (2010) 49: 1823–1862 1831

Fig. 2 The phase distribution Pζ,q (θ1, θ2) against the angle θ = (θ2 − θ1), (a) q = 1, (b) q = 10, where the
solid curve for ζ = 1, the dot curve for ζ = 3 and the dash curve for ζ = 5

ζ → ∞ we get these limit g
(2)
b (ζ ) = q−1

q
. For further increase of q the state |ζ, q〉 exhibits

full sub-Poissonian behavior (see Fig. 1(b)). We note that the super-Poissonian distribution
interval increases by increasing the parameter q . As it is exhibited by Figs. 1(a, b) the modes
a and b behave differently for small values of ζ and also for large values of ζ . However,
both modes may show sub-Poissonian behavior. For example, when we take ζ = √

2 and
q = 2 it is found that g(2)

a (ζ ) = g
(2)
b (ζ ) = 2

3 which means sub-Poissonian behavior in both
modes.

2.3.2 Phase Properties

In the present section we shall discuss the phase distribution for the finite dimensional pair
coherent states. For this reason it is convenient to use the phase distribution formalism intro-
duced by Barnett and Pegg [88–95]. It is well known that the phase operator is defined as the
projection operator on a particular phase state multiplied by the corresponding value of the
phase. Therefore one can find that the Pegg-Barnett phases distribution function Pζ,q(θ1, θ2)

is given by [93–95]:

Pζ,q(θ1, θ2) = |Nq |2
(2π)2

∑

n,m

ζ nζ ∗m

√
(q − n)!(q − m)!

q!n!q!m!
× exp

[
i
[
(q − n) − (q − m)

]
θ1 + i(n − m)θ2

]
. (22)

Therefore the phases distribution function can be written as

Pζ,q(θ1, θ2) = |Nq |2
(2π)2

∣
∣∣
∣∣

∑

n

ζ n

√
(q − n)!

q!n! exp[inθ ]
∣
∣∣
∣∣

2

, −π ≤ θ ≤ π, (23)

which is normalized according to
∫ π

−π

∫ π

−π
P (θ1, θ2, ζ ) dθ1 dθ2 = 1. Due to the correlated

between the two modes, the phase distribution depends on the difference between the phases
of the modes. In Fig. 2 we plot Pζ,q(θ) against the angle θ = θ2 − θ1 for different valued of
the parameter q and |ζ |.

Generally for very small (large) values of |ζ | the state (4) almost represents a Fock state
and hence the information about the phase is lost. As |ζ | increases partial coherent phase
states result and the phase distribution shows a peak. This peak is centered at θ = 0 and the
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Fig. 3 The Q(x,y) as function
of (x, y). (a) q = 0, (b) q = 2,
(c) q = 5

distribution is symmetric around this peak. For q = 1, plotted in Fig. 2(a) it is observed that
Pζ,q(θ) starts at Pζ,q(−π) = 0,0.01,0.016 when |ζ | = 1,3,5 respectively. The maxima for
the distribution at θ = 0 decrease by increasing |ζ | = 1. In Fig. 2(b) we take a large value
for the parameter q (q = 10) and the same values of |ζ |(1,3,5). We see that the function
Pζ,q(θ) starts at P (−π) = 0.013,0.002,0.003 when |ζ | = 1,3,5 respectively. The maxima
for the distribution at θ = 0 by increasing the value of |ζ |. However, this increase turns to a
decrease for larger values of |ζ |. The maximum value for Pζ,q(0) shifts to higher values of
|ζ | as q increases.

2.3.3 Q-function

It has been shown from earlier studies [96–98] that the quasi-probability (Wigner-Moyal
W -, Husimi-Kano Q- and Glauber-Sudarshan P -) function, are important for the statistical
description of a microscopic system and provide insight into the non-classical features of
the radiation fields. In this section we shall concentrate on the Q- and W -functions only.
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For that purpose we consider the two-mode Q-function defined as

Q(α,β) = 1

π2

∣
∣〈α,β|ζ, q〉∣∣2

, (24)

where α,β ∈ C and |α,β〉 = |α〉|β〉, with |α〉 and |β〉 the usual coherent states. Generally
there are four variables associated with the real and imaginary parts of α,β . For visualization
let us confine ourselves to a subspace determined by α = β [68]. In that subspace the Q-
function for the finite dimensional pair coherent state is calculated to be

Q(x,y) = exp[−2(x2 + y2)]
π2

∣∣
∣∣
∣
Nq

q∑

n=0

ζ nαq

√
q!n!

∣∣
∣∣
∣

2

, (25)

where x = Re(α) and y = Im(α). We can write the effective function as a function of r =√
x2 + y2

Q(r) ∼ rq exp
[−2r2

]
. (26)

The maximization or minimization depend on the parameter q , when q = 0 there exist
unique maximum value at r = 0. For q > 0 there exist maximization at r = √

q and mini-
mization at r = 0.

We represent in Fig. 3 the function Q(r) we take different values for q . We find that
when q = 0 the function Q(r) for the state |ζ,0〉 has one peak centered at r = 0, as shown
in Fig. 3(a) and the distribution is almost Gaussian for the vacuum state. For the |ζ,2〉,
the shape of the function is sensitive to changes in q (Figs. 3(b) and 3(c)) where the state
|ζ, q〉 is the most effective state and contribution is the mainly effective one where a crater
is apparent in the center. However, if we increase q the center crater-like spreads out in the
phase space and the diameter increases as the q increase as shown in Fig. 3(c).

3 Superposition of the Finite Dimensional Pair Coherent State

The correlated two-mode states |ζ, q,φ〉 are defined as superposition of two finite dimen-
sional state separated in phase by π .

|ζ, q,φ〉 = Nφ

[|ζ, q〉 + exp(iφ)|−ζ, q〉], (27)

where the normalization constant Nφ is given by

Nφ = 1√
2

[

1 + N2
q cosφ

q∑

n=0

(−1)n|ζ |2n (q − n)!
q!n!

]− 1
2

. (28)

It is easy to verify that the states |ζ, q,φ〉 are eigenstates of the operator (â†b̂ + ζ q+1(âb̂†)q

(q!)2 )2

with eigenvalue ζ 2. In this contribution we focus on the two special cases of φ (namely
φ = 0 and π ), the general form can be rewritten as follows:

|ζ, q〉j = N2
q,j

[ q−j
2 ]∑

n=0

ζ 2n+j

√
(q − 2n − j)!
q!(2n + j)! |q − 2n − j,2n + j〉,

N−2
q,j =

[ q−j
2 ]∑

n=0

|ζ |4n+2j (q − 2n − j)!
q!(2n + j)! , j = 0,1.

(29)
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Now we discuss some statistical properties of these correlated two mode states of (29).
The results that we are going to present stem from a new approach to the superposing of the
finite dimensional states. Subsequently we shall examine the sub-Poissonian distribution,
The behavior of the phase distribution in the framework of Pegg and Barnett formalism and
the Wigner function the Q-function of the state (29) are discussed.

3.1 Sub-Poissonian Distribution

In the present section we consider an example of the nonclassical effects that is the phe-
nomenon of sub-Poissonian distribution. This can be expressed by means of the normalized
second-order correlation function in (19). Where

j 〈ζ, q|n̂a(n̂a − 1)|ζ, q〉j = N2
q,j

[ q−j
2 ]∑

n=0

|ζ |4n+2j (q − 2n − j)!
q!(2n + j)! (q − 2n − j)(q − 2n − j − 1),

j 〈ζ, q|n̂b(n̂b − 1)|ζ, q〉j = N2
q,j

q−j
2∑

n=0

|ζ |4n+2j (q − 2n − j)!
q!(2n + j)! (2n + j)(2n + j − 1),

(30)

and

j 〈ζ, q|n̂a|ζ, q〉j = N2
q,j

[ q−j
2 ]∑

n=0

|ζ |4n+2j (q − 2n − j)!
q!(2n + j)! (q − 2n − j),

j 〈ζ, q|n̂b|ζ, q〉j = N2
q,j

[ q−j
2 ]∑

n=0

|ζ |4n+2j (q − 2n − j)!
q!(2n + j)! (2n + j).

(31)

The function g(2)
z (ζ ) given by (19) for the mode z serves as a measure of the deviation from

the Poissonian distribution that corresponds, as we mentioned before, to coherent states
with g(2)

z (ζ ) = 1. If g(2)
z (ζ ) < 1 (> 1), the distribution is called sub (super)-Poissonian, if

g(2)
z (ζ ) = 2 the distribution is called thermal and when g(2)

z (ζ ) > 2 it is called super-thermal.
In Fig. 4(a), the second-order correlation function g(2)

a (ζ ) given by (19), (30), (31) for q

taking odd numbers is plotted against |ζ | for q = 3,5,7 there exist two cases. The first case
when we take j = 0, this figure exhibits the very striking quantum nature of the generated
field. For the first mode, we find that the distribution function starts to be sub-Poissonian
g(2)

a (0) < 1 at small values of |ζ | which starts from q−1
q

, but by increasing the parameter

q the function g(2)
a (ζ ) reaches a super-Poissonian distribution (g(2)

a (ζ ) > 1) as appearing in
Fig. 4(a). For the second mode at some value of |ζ | the state with j = 0 becomes super-
thermal (g

(2)
b (0) > 2) while the state with higher values of ζ the distribution becomes sub-

Poissonian. Thus when we take the limits as ζ → ∞ we get these limit g
(2)
b (ζ ) = q

q−1 see
Fig. 4(b).

The second case when we take j = 1. In this case we find larger changes occurring
in the shape of the curve for the function g(2)

a (ζ ). For the first mode the function g(2)
a (ζ )

starts with sub-Poissonian distribution. For higher values of |ζ | the function g(2)
a (ζ ) be-

comes super-Poissonian and super-thermal as observed in Fig. 5(a). For the second mode
the function g

(2)
b (ζ ) starts from 0, by increasing of the parameter |ζ | the function reaches

to super-Poissonian see Fig. 5(b). Increasing of |ζ | makes the distribution returns to sub-
Poissonian distribution. The limits as ζ → ∞ equal g

(2)
b (ζ ) = q−1

q
.



Int J Theor Phys (2010) 49: 1823–1862 1835

Fig. 4 The second-order function of |ζ |, j = 0. (a) For mode a, (b) for mode b, where the solid curve for
q = 3, the dotted curve for q = 5 and the dashed curve for q = 7

Fig. 5 Same as Fig. 4 but j = 1

When q takes even numbers, for the first and the second modes when (j = 0,1) the
behavior is the same as the above case when (j = 1,0) respectively, for the other parameters
fixed.

The cross correlation between the two-mode is given by

	cross(ζ ) = j 〈ζ, q|n̂an̂b|ζ, q〉j − j 〈ζ, q|n̂a|ζ, q〉jj 〈ζ, q|n̂b|ζ, q〉j .
If 	cross is a positive quantity, this means that the modes are correlated, while anti-

correlation amongst the modes occurs when 	cross is negative values. In Fig. 6 the cross
correlation function 	cross(ζ ) is plotted against |ζ | for q = 3,5,7. From the figure the func-
tion 	cross(ζ ) negative and the nonclassicality behavior is demonstrated by increase of the
parameter q .
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Fig. 6 The cross correlation
between the two-mode as a
function of |ζ |, j = 0 where the
solid curve for q = 3, the dotted
curve for q = 5 and the dashed
curve for q = 7

3.2 Cauchy-Schwarz Inequality Violation

The Cauchy-Schwarz inequality is defined as

j 〈ζ, q|n̂a(n̂a − 1)|ζ, q〉j j 〈ζ, q|n̂b(n̂b − 1)|ζ, q〉j ≥ j 〈ζ, q|n̂an̂b|ζ, q〉2
j . (32)

We shall examine the scaled Cauchy-Schwarz inequalities in the superposition of the finite
dimensional PCS determined by

Fab(ζ ) = j 〈ζ, q|n̂a(n̂a − 1)|ζ, q〉j j 〈ζ, q|n̂b(n̂b − 1)|ζ, q〉j
j 〈ζ, q|n̂an̂b|ζ, q〉2

j

. (33)

The inequality (32) is violated if the function Fab is less than unity. For that purpose
we need to calculate the expectation values appearing in (30). Those in the numerator were
already known from (33) and those in the denominator are calculated to be generally for
j = 0,1.

j 〈ζ, q|n̂an̂b|ζ, q〉j = N2
q,j

[ q−j
2 ]∑

n=0

|ζ |4n+2j (q − 2n − j)!
q!(2n + j)! (q − 2n − j)(2n + j). (34)

The Cauchy-Schwarz inequality for the finite dimensional pair coherent state is clearly
seen in Fig. 7 for the two modes (a, b). Where q = 3,5,7 and for case j = 0, partial vi-
olation starting from non-zero for short interval of |ζ | and full violated after short interval
(a partial violation means that F23 > 1 at small |ζ | and then becomes less than unity for
large |ζ |). As the parameter |ζ | increases the function Fab(ζ ) reaches zero as in Fig. 7(a).
For j = 1 full violation starting from zero, after short interval the function Fab(ζ ) becomes
partially violated as observed in Fig. 7(b). The second case when q takes even number
namely (q = 4,6,8). For j = 0 we see that all curves do not suffer violation and they never
reach unity see Fig. 8(a). While for j = 1 the function Fab(ζ ) shows full violation starting
from zero, as the parameter |ζ | progresses the function Fab(ζ ) shows partial variolation. Af-
ter short interval the behavior returns to full violation and the function Fab(ζ ) reaches zero
as observed in Fig. 8(b). The violation is stronger (weaker) at small |ζ | (large |ζ |)-region.
However, the variolation depends on the parameter q for small values of q the function
Fab(ζ ) almost less than unity. But for larger values of q the function Fab(ζ ) shows partial
violation.
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Fig. 7 Fab as a function of |ζ |, (a) for fixed j = 0 and the solid curve for q = 3, the dotted curve for q = 5
and the dashed curve for q = 7, (b) same as (a) but j = 1

Fig. 8 Same as Fig. 3 but the solid curve for q = 4, the dotted curve for q = 6 and the dashed curve for
q = 8

3.3 Phase Properties

It is well known that the phase operator is defined as the projection operator on a particular
phase state multiplied by the corresponding value of the phase. Therefore one can find that
the Pegg-Barnett phase distribution function Pζ,q(θ1, θ2) is given by [93–95]:

Pζ,q(θ1, θ2) = |Nq |2
(2π)2

∑

n,m

ζ 2n+j ζ ∗2m+j

√
(q − 2n − j)!(q − 2m − j)!

q!(2n + j)!q!(2m + j)!
× exp

[
i
[
(q − 2n − j) − (q − 2m − j)

]
θ1 + i(2n − 2m)θ2

]
. (35)
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Fig. 9 The phase distribution P(θ) as a function of θ and (a) j = 0, the solid curve for ζ = 3 and the dotted
curve for ζ = 5, (b) same as (a) but j = 1

Therefore the phases distribution function can be written as

Pζ,q(θ1, θ2) = |Nq |2
(2π)2

∣∣
∣∣
∣

∑

n

ζ 2n+j

√
(q − 2n − j)!
q!(2n + j)! exp[i2nθ ]

∣∣
∣∣
∣

2

, −π ≤ θ ≤ π, (36)

with θ = θ2 − θ1. Due to the correction between the two modes, the phase distribution de-
pends on the difference between the phases of the two modes. In the figures we plot Pζ,q(θ)

against the angle θ = θ2 − θ1 for different values of the parameter q and |ζ |.
Generally for very small (large) values of |ζ | the state (27) almost represents a Fock

state and hence the information about the phase is lost. As |ζ | increases partial coherent
phase states result and the phase distribution shows a thee-peak structure. The model peak
is centered at θ = 0 and the distribution is symmetric around the central peak and has wings
at θ = ±π . For q = 3, plotted in Fig. 9(a), it is observed that Pζ,q(θ) starts at Pζ,q(−π) =
0.042,0.032 when |ζ | = 3,5 respectively. The maxima for the distribution at θ = 0 decrease
by increasing |ζ |. In Fig. 9(b) we take a large value for the parameter q (q = 10) and the
same values of |ζ | (3,5). We see that the function Pζ,q(θ) starts at P (−π) = 0.056, (0.125)

when |ζ | = 3, (5) respectively. The maxima for the distribution.at θ = 0 by increasing the
value of |ζ |. In Fig. 9(b) we take larger values for the parameter q (q = 10) and the same
values of |ζ | (3,5). We see that the function Pζ,q(θ) starts at Pζ,q(θ) = 0.056, (0.125) when
|ζ | = 3, (5) respectively. The maxima of the phase distribution are increased by increasing
of the parameter |ζ | (see Fig. 9b). However this increase turns to a decrease for larger values
of |ζ |. The maximum value for Pζ,q(0) shifts to higher values of |ζ | as q increases.

3.4 s-Parameterized Quasiprobability Function (QDF)

The QDF’s for a quantum state of a physical system are useful tools for investigating the
dynamical and statistical properties of a quantum mechanical system [96–115]. They include
the Glauber-Sudarshan P -function [101], the Wigner W -function [97, 98] and the Husimi
Q-function [102, 103] which are closely related to the operator ordering in the mathematical
description of a physical system.

The s-parameterized characteristic function (CF) is perhaps one of the most well-known
important function in quantum optics, since it is the Fourier transform of the s-parameterized
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QDF. The s-parameterized CF for a single-mode field is defined by [107, 108]

C(λ, s) = Tr
[
ρ̂D̂(λ)

]
exp

(
s

2
|λ|2

)
, (37)

with D̂(λ) is the displacement operator given by D̂(λ) = exp(λâ+ − λ∗â), and λ = |λ|eiθ .
Here, s is ordering parameter where s = (−1)1 means (anti-)normal ordering and s = 0 is
symmetrical or Weyl ordering [107, 108].

The s-parameterized quasi-probability function is the Fourier transform of the s-
parameterized characteristic function

F(β, s) = 1

π2

∫
C(λ, s) exp

(
λ∗β − λβ∗)d2λ, (38)

where the real parameter s defines the corresponding phase space distribution. As mentioned
above it is associated with the ordering of the field bosonic operators.

Since the finite dimensional PCS (27) is a two-mode state, thus the definitions ((37) and
(38)) have to be extended to two-mode case. The s-parameterized CF for the two-mode
states is defined as follows

C(λ1, λ2, s) = Tr
[
ρ̂D̂(λ1)D̂(λ2)

]
exp

{
s

2

(|λ1|2 + |λ2|2
)}

. (39)

Thus the s-parameterized QDF for the two-mode case is given by

F(β1, β2, s) =
(

1

π2

)2∫ ∫
C(λ1, λ2, s) exp

(
λ∗

1β1 + λ∗
2β2 − λ1β

∗
1 − λ2β

∗
2

)
d2λ1 d2λ2. (40)

It is noted that formulae (39) and (40) are extensions of formulae (37) and (38) for CF and
QDF of the single mode fields.We consider a phase space QDF for our states. To begin the
state (27) will be written in the form

|ζ, q〉B =
[ q−j

2 ]∑

n=0

Bn(ζ, q)|q − 2n − j,2n + j〉, (41)

where

Bn(ζ, q) = N2
q,j ζ

2n+j

√
(q − 2n − j)!
q!(2n + j)! .

For the density operator ρ̂ = |ζ, q〉〈q, ζ | the s-parameterized CF has the two mode form,
using (41) for the state (29) in the formulae (39) and (40), we get

C(λ1, λ2, s) = exp

[{
− (1 − s)

2

}(|λ1|2 + |λ2|2
)]

×
[ q−j

2 ]∑

n=0

[ q−j
2 ]∑

m=0

Bn(ζ, q)B∗
m(ζ, q)

√
(q − 2n − j)!
(q − 2m − j)!

×
√

(2n + j)!
(2m + j)!L

2n−2m
q−2n−j

[|λ1|2
]
L2m−2n

2n+j

[|λ2|2
]
, (42)
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where Ln
m(x) are associated Laguerre polynomials given by

Ln
m(x) =

m∑

r=0

(
m + n

m − r

)
(−1)r

r! xr, (43)

F(β1, β2, s) = N2
q,j

(
2

π(1 − s)

)2

exp

[−2(|β1|2 + |β2|2)
(1 − s)

]

×
[ q−j

2 ]∑

n=0

[ q−j
2 ]∑

m=0

ζ 2n+j ζ ∗2m+j (q − 2n − j)!
(2m + j)!

×
(

1 + s

(1 − s)

)q

L2n−2m
q−2n−j

[
4|β1|2

(1 − s2)

]
L2m−2n

2n+j

[
4|β2|2

(1 − s2)

]
. (44)

Note that in (42) and (44) there exist two associated Laguerre polynomials. For negative
values of (m − n) or (n − m) we use the formula [116]

L
(−α)
n+α (z) = (−z)α n!

(n + α)!L
(α)
n (z).

For visualization of these functions let us confine ourselves to a subspace determined by
α = β [68], we find that the s-parameterized QDF for our field states may be written in the
following form:

F(β, s) = N2
q,j

(
2

π(1 − s)

)2

exp

[−4(|β|2)
(1 − s)

] [ q−j
2 ]∑

n=0

|ζ |4n+2j (q − 2n − j)!
(2n + j)!

×
(

1 + s

(1 − s)

)q

L0
q−2n−j

[
4|β|2

(1 − s2)

]
L0

2n+j

[
4|β|2

(1 − s2)

]
. (45)

This formula gives the exact analytical expressions for the s-parameterized QDF for the
state (29). It is noted that, for the P -function, i.e., s = 1, special attention has to be paid in
performing the limit s → 1 [117]. Originally the P function was introduced in an alterna-
tive way independently by Sudershan [99]. Recently, Wünsche discussed the nonclassicality
of states defined by nonpositivity of the P -function [117]. However we shall not discuss
this function here any further. Instead we concentrate on the other two quasi-probability
functions namely Wigner and Q-functions.

In Fig. 10 we plot W(β), i.e., s = 0 in (45) for j = 1, ζ = 5, and q = 4 and 5. It is clear
that (for q odd) the Wigner function has negative peak at the origin observed and oscillatory
regime around the main peak. The non-classicality effect is more pronounced when q is
odd. The spreading of Wigner function over the β-plane is shown as q increases. For the
parameter q even, we can see the W function is almost positive and has Gaussian central
peak which range surrounding it. We can see in general when q is even the W function
has upward peak at the origin, while it has downward peak when q is odd at the origin. As
shown in Fig. 10 the oscillatory behavior is clear for large values of q .

On the other hand, the Q function is positive definite for every point in the phase space.
The Q-function for a single mode field can be written in a more compact form defined in
(24). The function Q(β) has been constructed in homodyne experiments [109, 110]. By
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Fig. 10 The Wigner function as a function of (x, y), where j = 1, ζ = 5, (a) q = 4, (b) q = 5

considering the properties of Q-function, the interference effects and photon number distri-
bution in phase space can be discussed [115].

For that purpose we consider the two-mode Q-function in the form

Q(α,β) = 1

π2
|〈α,β|ζ, q〉|2, (46)

where α,β ∈ C and |α,β〉 = |α〉|β〉, with |α〉 and |β〉 the usual coherent states. Generally
there are four variables associated with the real and imaginary parts of α,β . For visualization
let us confine ourselves to a subspace determined by α = β [68]. It is obtained from (47) by
written (s = 1). In that subspace the Q-function for the state (27) is calculated to be

Q(x,y) = exp[−2(x2 + y2)]
π2

∣
∣∣
∣∣
Nq,j

q∑

n=0

ζ 2n+jαq

√
q!(2n + j)!

∣
∣∣
∣∣

2

, (47)
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where x = Re(α) and y = Im(α). We can write the effective function as a function of r =√
x2 + y2 on the form Q(x,y) = Aq,jf (r) where

f (r) = r2q exp
[−2r2

]
. (48)

By comparing between (25), (26) and (48), (49) we see that same behavior, so the maxi-
mization or minimization depend on the parameter q . When q = 0 there exists unique max-

imum value at r = 0. For q > 0 there exists maxima at r =
√

q

2 and minima at r = 0 as

mentioned after (25), (26).

4 Non-Linear Finite Dimensional Pair Coherent State

In the present section we develop the idea of the finite dimensional PCS by introduce a
nonlinear finite dimensional state (NPCS) [116] as the eigenstate of the pair operators

(
f1(n̂a)â

†f2(n̂b)b̂ + ζ q+1(â 1
f1(n̂a )

1
f2(n̂b)

b̂†)q

(q!)2

)
and

(49)
Q̂ = (

â†â + b̂†b̂
)

for the two modes. Namely:

(
f1(n̂a)â

†b̂f2(n̂b) + ζ q+1(â 1
f1(n̂a )

1
f2(n̂b)

b̂†)q

(q!)2

)
|ζ, q〉 = ζ |ζ, q〉,

(50)
Q̂|ζ, q〉 = q|ζ, q〉,

where the parameter ζ is a complex variable while the parameter q is an integer. The expan-
sion of this state in the two mode states |na,nb〉 = |na〉 ⊗ |nb〉, where |ns〉 is the Fock state
for the mode s (s = a or b) takes the form

|ζ, q〉 = Nq

q∑

n=0

ζ n

√
(q − n)!

q!n!
f1(q − n)!

f1(q)!f2(n)! |q − n,n〉, (51)

where f (n)! = f (0). f (1) . . . f (n) and f (0) = 1 the normalization constant Nq is given by

Nq =
[

q∑

n=0

|ζ |2n (q − n)!
q!n!

(
f1(q − n)!

f1(q)!f2(n)!
)2

]−1
2

. (52)

Because of the appearance of the operators â†b̂ or âb̂† in this form and the functions
f1(n̂a) and f2(n̂b) it may be legitimate to call it a finite dimensional nonlinear pair coherent
state, or converter state. Once we have introduced this class of nonlinear finite dimensional
pair coherent state, we wish to discuss some of their statistical properties. The results that we
are going to present are concerned with the examination of the sub-Poissonian distribution
and the phase properties of the state obtained. But before we do this, a generation scheme
for the mentioned state is demonstrated in the next section.
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4.1 Generation Scheme

Here we propose an experimental scheme to generate the state of (51) in the vibrionic mo-
tion of an ion which is trapped in real two-dimensional (2D) space. The specification of

the operators (f1(n̂a)â
†f2(n̂b)b̂ + ζ q+1(â 1

f1(n̂a )
1

f2(n̂b)
b̂†)q

(q!)2 ) is subject to the generation schemes
within the framework of the motion of a trapped ion in a 2-dimensional harmonic poten-
tial. Consider a single ion trapped in a 2-D harmonic potential with frequencies ν1 (in the
x-direction), ν2 (in the y-direction) in interaction with three laser fields propagating in the
same direction tuned respectively to the electronic transition ω0 of the ion and to the vi-
brational side band of frequency taken as follows: The first vibrational side band has the
frequency (ν2 − ν1) lower than that transition, but the second vibrational side band has the
frequency q(ν2 − ν1) higher than that transition. The Hamiltonian of this system is written
as (6). As before use a vibrational rotating wave approximation and neglect the terms with
fast oscillations. Thus the interactions Hamiltonian is simplified to that approximating in
(8) before. It should be noted that n̂1 + n̂2 is a constant of motion for the Hamiltonian (8).
The terms between parenthesis in (8) can be summed in terms of the associated Laguerre
polynomials thus instead of (9) a generalized form is given as follows:

Hint = λ
(
f1(n̂a)â

†f2(n̂b)b̂ + ζ q+1âqf3(n̂a)b̂
†qf4(n̂b) − ζ

)
σ+ + h.c., (53)

where

f1(n̂a) = L1
n̂a−1(η

2
1)

(n̂a)L
0
n̂a

(η2
1)

, f2(n̂b) = L1
n̂b

(η2
2)

(n̂b + 1)L0
n̂b

(η2
2)

,

f3(n̂1) = (n̂a − q)!L1
n̂a−q

(η2
1)

(n̂a)!L0
n̂a

(η2
1)

, f4(n̂b) = n̂b!L1
n̂b

(η2
2)

(n̂b + q)!L0
n̂b+q

(η2
2)

, (54)

λ = −�1η1η2L
0
n̂a

(
η2

1

)
L0

n̂b

(
η2

2

)
exp

[
− (η2

1 + η2
2)

2
+ iφ1

]
, (55)

where ζ same as (9) and Lm
n (x) is the associated Laguerre polynomials given by (43). While

�2 is related to the other parameters through the formula

�2 = ζ q+1�1

(−1)q−1(η1η2)q−1f1(q)!f2(q)! . (56)

Therefore the parameters ζ and q are controlled by the amplitudes and phases of the applied
laser fields and the Lamb-Dicke parameters. As has been mentioned before the experimental
evidences lead to estimation of the Lamb-Dicke parameter η is calculated to be ≈ 0.23. Thus
using this estimate for η1 and η2 puts η1η2 ≈ 0.05. For the values |ζ | ≈ η1η2 and for arbi-

trary q , then �0 ∼ �1(η1η2)
2, �2 ∼ �1

(η1η2)2

f1(q)!f2(q)! which gives �0 ∼ �1
400 �2 ∼ �1

400f1(q)!f2(q)! .
Thus the value for E1 has to be two orders of magnitude higher than E0 and E2. Since
�i = μ.Ei = μ Ei cos(θi) (i = 0,1,2) the angle θi can be used to reduce the estimate
for Ei . This means that moderate values for E0 and E2 and strong value of E1 are sufficient
to produce such state with arbitrary q for |ζ | ≈ η1η2. However for larger values of |ζ | then
the number q must attain large values for appropriate laser fields. For generating the state
of (51) let us look at the master equation for the density matrix under spontaneous emission
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with energy dissipation rate γ which is given by

∂ρ̄

∂t
= −i[Hint, ρ] + γ

2
[2σ−ρσ+ − σ+σ−ρ − ρσ+σ−]. (57)

The stationary solution ρ̄s for this master equation is obtained by setting ∂ρ̄

∂t
= 0. A solu-

tion ρ̄s can be given as

ρ̄s = |g〉|ζ 〉〈ζ |〈g|, (58)

with |g〉 the electronic ground state (σ−|g〉 = 0, 〈g|σ+ = 0) and |ζ 〉 is the vibration eigen-
state that satisfies Hint|ζ 〉 = 0. It is straightforward to show that |ζ 〉 belongs to the class of
states considered in (51). To tailor the Hamiltonian of any nonlinear multi-quanta JCM a
scheme of using a number of lasers has been presented to produce such interaction [78, 79].
It is to be mentioned that the nonlinear JCM has been realized experimentally [79] as men-
tioned earlier.

4.2 Relations to Other States

4.2.1 Relation to SU(2) Group

To relate the states (51), (52) to realizations of this group we use the operators Jx, Jy and Jz

are defined as

Jx = (f1(n̂a)â
†f2(n̂b)b̂ + â 1

f1(n̂a )
b̂† 1

f2(n̂b)
)

2
,

Jy = (f1(n̂a)â
†f2(n̂b)b̂ − â 1

f1(n̂a )
b̂† 1

f2(n̂b)
)

2i
,

Jz = (n̂a − n̂b)

2
(59)

which satisfy the commutation relations [Jx, Jy] = iJz, [Jy, Jz] = iJx and [Jz, Jx] = iJy .
Note that neither Jx nor Jy is a hermitian operator, we get they satisfy the same SU(2)

conditions. It is useful to introduce the following operators

J+ = Jx + iJy = f1(n̂a)â
†f2(n̂b)b̂, J− = Jx − iJy = â

1

f1(n̂a)
b̂† 1

f2(n̂b)
. (60)

Note again that J+ is not the hermitian conjugate of J−. However, we have the commu-
tation relation

[Jz, J±] = ±J±, [J+, J−] = 2Jz. (61)

Furthermore, the operator

Ĉ2 = J 2
z + 1

2
(J+J− + J−J+) =

(
n̂a + n̂b

2

)(
n̂a + n̂b

2
+ 1

)
. (62)

These operators can be through of as operation under Lie algebra with the generators Ji .
Once again we emphasis Jx and Jy are not hermitian operators and hence J+ is not the her-
mitian conjugate of J−. The operator Ĉ2 commutes with all the generators of the Lie algebra
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and in the language of group theory is known as a Casimir operator. The state (52) is eigen-
state for the operator Ĉ2 with eigenvalue q

2 (
q

2 + 1). The unitary irreducible representations
of the SU(2) are just the familiar angular momentum states |j,m〉 satisfying the relations

Ĉ2|j,m〉 = j (j + 1)|j,m〉, Jz|j,m〉 = m|j,m〉,
J+|j,m〉 = ∣

∣f1(j + m + 1)
∣
∣
∣
∣f2(j − m − 1)

∣
∣
√

(j + m + 1)(j − m)|j,m + 1〉,

J−|j,m〉 =
√

(j + m)(j − m + 1)

|f1(j + m)||f2(j − m)| |j,m − 1〉,

j = 1

2
,1,

3

2
,2, . . . , m = −j,−j + 1, . . . , j. (63)

Note that the representations are finite dimensional, the dimension for a given j being 2j +1.
Now if we take q = 2j the state (51) the result same as the linear case see (2.2.1) take the
following form

|ζ,2j 〉 = N2j

2j∑

n=0

ζ n f1(2j − n)!
f1(2j)!f2(n)!

√
(2j − n)!

2j !n! |2j − n,n〉

= N2j

j∑

n=−j

ζ n+j f1(j − n)!
f1(2j)!f2(n + j)!

√
(j − n)!

2j !(n + j)! |j − n,n + j〉, (64)

which is eigenstate of the operator Ĉ2 with eigenvalue j (j + 1).

4.2.2 Exponential Form

In a similar way to Sect. 2.2.2, we note that the state |ζ, q〉 of (51) may be cast as

|ζ, q〉 = Nq

q∑

n=0

ζ n (q − n)!ânb̂†n

q!n!
f1(q − n)!

f1(q)!f2(n)! |q,0〉. (65)

One use (18) with

g(n̂a, n̂b) = ζ

f1(n̂a)f2(n̂b)n̂a

, (66)

the state |ζ, q〉 is finally written in the exponential form

|ζ, q〉 = Nq

∞∑

n=0

[âb̂† ζ

f1(n̂a )f2(n̂b)n̂a
]n

n! |q,0〉 = Nq exp

[
âb̂† ζ

f1(n̂a)f2(n̂b)n̂a

]
|q,0〉 (67)

in a similar expression for the conventional coherent state. However, the representation of
the coherent operator by the pair operator âb̂† ζ

f1(n̂a )f2(n̂b)n̂a
.

4.2.3 Bell States

Entanglement is an essential resource for many applications in quantum information science
such as quantum superdense coding [118, 119] quantum teleportation [120–125], quantum
cryptography [116–128] and quantum computing [129, 130] most of these applications are
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based on the maximally-entangled two-particle quantum states called Bell states. The max-
imally entangled states are composed form single-phonon number states as |ψ〉 = |1,0〉 or
|0,1〉, two-phonon number state as |ψ〉 = |1,1〉 and null-photon state as |ψ〉 = |0,0〉. We
can generate the maximally entangled states by taking the nonlinear functions f1(n̂a) = Î

and f2(n̂b) = Î and the parameter q taken the values 1, 2, 0 respectively.

|1,1〉 = 1

ζN2

√
2

[|ζ,2〉 − |−ζ,2〉],

|0,1〉 = 1

2ζN1

[|ζ,1〉 − |−ζ,1〉],

|1,0〉 = 1

2N1

[|ζ,1〉 + |−ζ,1〉],
|0,0〉 = |0,0〉, (68)

where Nq given by (52), the maximal entangled states are define as following

ψ± = 1√
2

(|1,1〉 ± |0,0〉),

ϕ± = 1√
2

(|1,0〉 ± |0,1〉). (69)

Thus the maximally entangled states ψ±, ϕ± which play an important role in quantum mea-
surement theory, can be constructed from the states |ζ, q〉.

4.3 Nonclassical Effects

In the following subsections we investigate the influence of the controlling parameters q , η1

and η2 on the nonclassical behavior of the modes where, in particular, the sub-Poissonian
distribution and the phase distribution are discussed.

4.3.1 Sub-Poissonian Distribution

In this section, we shall evaluate the correlation function, to discuss the phenomenon of
sub-Poissonian distribution for non-linear finite dimensional pair coherent state. This can be
expressed by means of the normalized second-order correlation function (19) for the mode
z in a quantum state |ζ, q〉 as defined by (51) namely:

g(2)
z (ζ ) = 〈ζ, q|n̂z(n̂z − 1)|ζ, q〉

〈ζ, q|n̂z|ζ, q〉2
, ∀z = a, b, (70)

where

〈ζ, q|n̂a(n̂a − 1)|ζ, q〉 = N2
q

q∑

n=0

|ζ |2n

(
f1(q − n)!

f1(q)!f2(n)!
)2

(q − n)!
q!n! (q − n)(q − n − 1),

(71)

〈ζ, q|n̂b(n̂b − 1)|ζ, q〉 = N2
q

q∑

n=0

|ζ |2n

(
f1(q − n)!

f1(q)!f2(n)!
)2

(q − n)!
q!n! n(n − 1),
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Fig. 11 The sub-Poissonian function as function of |ζ |, (a) for mode a and η = 0, (b) for mode b and η = 0,
(c) for mode a and η = 0.3, (d) for mode b and η = 0.3, where the solid curve for q = 3, the dot curve for
q = 4, the dash curve for q = 5

and

〈ζ, q|n̂a|ζ, q〉 = N2
q

q∑

n=0

|ζ |2n

(
f1(q − n)!

f1(q)!f2(n)!
)2

(q − n)!
n! (q − n),

(72)

〈ζ, q|n̂b|ζ, q〉 = N2
q

q∑

n=0

|ζ |2n

(
f1(q − n)!

f1(q)!f2(n)!
)2

(q − n)!
n! n,

where f1(q − n) and f2(n) are given by (55). The function g(2)
z (ζ ) for the mode z serves

as a measure of the deviation from the Poissonian distribution that corresponds to coherent
states with g(2)

z (ζ ) = 1.
To reveal the physical content of the state, we plot g(2)

a (ζ ) against |ζ |. The first case when
we take η = 0, we show that when q = 0 or 1 the function g(2)

a (ζ ) = 0 due to the fact that
the states present are either vacuum or one photon and for both of them g(2)(ζ ) is zero. For
the effectiveness we take q = 3 it is to be observed that the state starts at g(2)

a (0) = 2
3 and for

a short interval of |ζ | the function g(2)
a (ζ ) has full sub-Poissonian distribution. Also super-

Poissonian behavior appears for higher values of ζ and its behavior almost like the thermal
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distribution as observed in Fig. 11(a). In Fig. 11(a) we take q = 4,5, we find that the function
starts at 3

4 and 4
5 respectively, as has been earlier studied in [100]. This is because it looks

as that we have the Fock state |q〉 present in this case when ζ → 0 and g(2)
a (ζ ) = q−1

q
. In

this basis, we see that g(2)
a (ζ ) < 1 for a short range of ζ . When the parameter ζ is increased

further, the state |ζ, q〉 exhibits super-Poissonian behavior and for large values of |ζ | the state
reaches super-thermal state behavior because for ζ → ∞ we get these limit g

(2)
b (ζ ) = 4(q−1)

q
.

The nonclassical nature of the state is apparent, when one takes the value q = 2 where the
function g(2)

a (ζ ) < 1 as shown in Fig. 11(a). On the other hand when we take q > 2 the
function g(2)

a (ζ ) > 2 for higher values of ζ .
As soon as one takes the nonlinear functions f1(q − n) and f2(n) into consideration

and adjusts the parameters η = η1 = η1 = 0.3 in Fig. 11(b) one can see that the starting
points are unchanged for the three curves, but the interval of |ζ | for the full sub-Poissonian
and super-Poissonian distributions are increasing. The super-thermal state behavior too is
appearing, but the maximum values for the curves are decreased compared with the above
case as observed in Fig. 11(b).

Further we consider the function g
(2)
b (ζ ) for the second mode. In the case of η = 0 and

q takes the values 3,4 and 5 we find that the function g
(2)
b (ζ ) starts at 1.5, 1.33 and 1.25

respectively. Because of the condition between the two modes (â†â + b̂†b̂) is constant, thus
when we take the limits as ζ → 0 we get the limit g

(2)
b (ζ ) = q

q−1 . We see that g
(2)
b (ζ ) has a

decreasing trend and so for sufficiently large values of |ζ | it shows sub-Poissonian behavior
because for ζ → ∞ we get the limit g

(2)
b (ζ ) = q−1

q
. For further increase of q the state |ζ, q〉

exhibits full sub-Poissonian behavior (see Fig. 11(c)). We note that the super-Poissonian dis-
tribution interval increases by increasing the parameter q . As it is exhibited by Figs. 11(a)
and 11(c) the modes a and b behave differently for small values of |ζ | and also for large val-
ues of |ζ |. However, both modes may show sub-Poissonian behavior. For example when we
take |ζ | = √

2 and q = 2 it is found that g(2)
a (ζ ) = g

(2)
b (ζ ) = 2

3 which means sub-Poissonian
behavior in both modes see [100, 101]. When we take the nonlinearity parameter η = 0.3
into account we find that when q is small there exists a short interval of |ζ | where the func-
tion g

(2)
b (ζ ) reaches super-Poissonian state behavior, the distribution is lowered gradually to

sub-Poissonian behavior as observed in Fig. 11(d).

4.3.2 Phase Properties

The quantum properties of the radiation field can be investigated under different points of
view. Therefore we continue our progress and devote the present section to considering and
discussing the phase distribution for the states (51). For this reason it is convenient to use
the phase formalism introduced by Barnett and Pegg [88–95]. It is well known that the
phase operator is defined as the projection operator on a particular phase state multiplied by
the corresponding value of the phase. Therefore one can find that the Pegg-Barnett phases
distribution function Pζ,q(θ1, θ2) is given by [93–95]:

Pζ,q(θ1, θ2) = |Nq |2
(2π)2

∑

n,m

ζ nf1(q − n)!
f1(q)!f2(n)!

ζ ∗mf1(q − m)!
(f1(q)!f2(m)!)2

√
(q − n)!(q − m)!

q!n!q!m!
× exp

[
i
[
(q − n) − (q − m)

]
θ1 + i(n − m)θ2

]
. (73)
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Fig. 12 The phase distribution Pζ,q (θ) against the angle θ = (θ2 − θ1), (a) q = 1 and η = 0, (b) q = 10 and
η = 0, (c) q = 1 and η = 0.3, (d) q = 10 and η = 0.3, where the solid curve for ζ = 1, the dot curve for ζ = 3
and the dash curve for ζ = 5

Therefore the phases distribution function can be written as

Pζ,q(θ1, θ2) = |Nq |2
(2π)2

∣∣
∣∣
∣

∑

n

ζ nf1(q − n)!
f1(q)!f2(n)!

√
(q − n)!

q!n! exp[inθ ]
∣∣
∣∣
∣

2

, −π ≤ θ ≤ π, θ = θ2 − θ1.

(74)
Due to the correlation between the two modes, the phase distribution depends on the dif-
ference between the phases of the modes. In the figures we plot Pζ,q(θ) against the angle
θ = θ2 − θ1 for different valued of the parameter q , |ζ | and η.

The phase behavior for the present state we have plotted the function against the phase
angle θ for (η = 0) and different values of q same as above Sect. 2.3.2. As soon as one takes
the nonlinear functions f1(q − n) and f2(n) into consideration and adjusts the parameters
η = 0.3, we observe that a peak around θ = 0 develops and increases by decreasing the
parameter |ζ | as observed in Fig. 12(d). The behavior of the nonlinearity functions for the
phase distribution in this case is the same as in the first case (small values of q).

5 Two Modes Parametric Converter

The problem of coupled oscillators are also playing an essential role in the nonlinear opti-
cal effects. These include Raman and Brillouin effects, Stokes and anti-Stokes generations,
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etc. All these effects involve nonlinear coupling between various types of boson excitations
such as phonons, spin waves, plasmons, protons, polaritons, etc., as well as electromagnetic
waves. In the optical regime there are two of the most important nonlinear parametric in-
teractions, they are frequency conversion and parametric amplification [131–143]. In the
present section we shall generalize the usual JC model, however in a different direction. For
this reason we shall consider two coupled fields in the form of frequency converter type (re-
sultant of variation in the permeability) injected within a cavity where a 2-level atom passes,
so we have an interaction between the coupled fields and the atom, as well as the field-field
interaction. Therefore the system would acquire two different coupling parameters and the
Hamiltonian describing such a system can be written as follows

Ĥ

�
=

2∑

i=1

ωiâ
†
i âi + ω0

2
σz + iλ1

(
â

†
1 â2 − â1â

†
2

)
(σ+ + σ−) + λ2

(
â

†
1 â2 + â1â

†
2

)
, (75)

where ωi , i = 1,2 is the ith mode frequency, and ω0 is the frequency of two atomic energy
levels difference, λ1 is the coupling parameter that connects the field nonlinearly with the
atom, while λ2 is the coupling parameter responsible the field-field interaction. The opera-
tors â

†
i and âi are the fields creation and annihilation operators which satisfy the usual boson

commutation relations. The operators σ+(σ−), and σz are the usual raising (lowering) and
inversion operators for the two-level atomic system.

The Hamiltonian model in this case can be regarded as a driven coupled oscillator within
a cavity. Therefore it would be interesting to make a comparison between the present model
and that of the atom-field interaction under action of an external electric field. Although
both systems are different however, under an approximation one may manage to reduce the
present model to the other one. To show that let us approximate one of the fields in (75) to its
C-number, for example â2 → |α2| exp(−iω2t). In this case when we set Â = â1 exp(iω2t),
then the Hamiltonian (75) immediately transforms to the form

Ĥ

�
= ω̃Â†Â + ω0

2
σz + ig

(
Â†σ− − Âσ+

) + λ̄2
(
Â† + Â

)
, ω̃ = (ω1 − ω2), (76)

which is exactly the driven JC model under action of a constant electric field. It should
be noted that in the above equation we have applied the rotating wave approximation, and
introduced new coupling parameters g = λ1|α2| and λ̄2 = λ2|α2|.

5.1 The Time Evolution Operator

As we have mentioned above our aim of the present work is to examine some properties of
the system described by the Hamiltonian (75). Therefore we devote this section to find the
tools to reach our goal. For this reason let us introduce the canonical transformation

â1 = b̂1 cos ξ + b̂2 sin ξ, â2 = b̂2 cos ξ − b̂1 sin ξ (77)

where the operators b̂i (b̂
†
i ), i = 1,2 have the same meaning of the operators âi (â

†
i ), i =

1,2 while ξ is the rotation angle and will be determined later. It is easy to realize that the
canonical transformation (77) always satisfy the conservation of total photon number law
where

â
†
1 â1 + â

†
2 â2 = b̂

†
1b̂1 + b̂

†
2b̂2. (78)
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Which means that the sum of the photon number is invariant under this transformation.
Now if we insert (77) into (75), then after some calculations we have

Ĥ

�
=

2∑

i=1

ωin̂i + ω0

2
σ̂z + iλ1

(
b̂

†
1b̂2σ̂+ − b̂

†
2b̂1σ̂−

)
, n̂i = b̂

†
i b̂i , (79)

where the augmented frequencies are

ω1 = ω1 cos2 ξ + ω2 sin2 ξ − λ2 sin 2ξ,

ω2 = ω2 cos2 ξ + ω1 sin2 ξ + λ2 sin 2ξ,

ω1 − ω2 = (ω1 − ω2) cos 2ξ − 2λ2 sin 2ξ (80)

and

ξ = 1

2
tan−1

(
2λ2

ω1 − ω2

)
. (81)

It should be noted that in the derivation of the above Hamiltonian we have applied the
rotating wave approximation (RWA) with respect to the rotated operators b̂i and b̂

†
i , not to

the original (physical) operators âi and â
†
i . Now we look for the evolution operator from

which we will be able to obtain the dynamical operators for the present system. To do so let
us first write the equation of the motion in the Heisenberg picture thus

dn̂1

dt
= −dn̂2

dt
= 1

2

dσ̂z

dt
= λ1

(
b̂

†
1b̂2σ̂+ + b̂1b̂

†
2σ̂−

)
, (82)

from which we can define the constants of the motion

N̂1 = n̂1 − 1

2
σ̂z, N̂2 = n̂2 + 1

2
σ̂z. (83)

Using (83) together with (79) then the Hamiltonian model can be cast in the form

Ĥ

�
= Ĉ + N̂, (84)

Ĉ and N̂ are constants of the motion given by

Ĉ = 	

2
σ̂z + iλ1

(
b̂

†
1b̂2σ̂+ − b̂

†
2b̂1σ̂−

)
, N̂ =

2∑

i=1

ωiN̂i, (85)

and 	 = (ω1 − ω2 + ω0) is the detuning parameter and it can be written as 	 = δ − 2(ω1 −
ω2) sin2 ξ −2λ2 sin 2ξ with δ = ω0 − (ω2 −ω1). Note that the detuning parameter 	 depends
on the field-field couples parameter λ2. Since the constant operators Ĉ and N̂ commute then
the evolution operator Û (t) can be written as

Û (t) = exp(−iĤ t/�) = exp(−iN̂ t) exp(−iĈt), (86)

where

exp(−iN̂ t) =
[

exp(−iŴ1t) 0
0 exp(−iŴ2t)

]
(87)
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with

Ŵ1(n̂1, n̂2) = ω1

(
n̂1 − 1

2

)
+ ω2

(
n̂2 + 1

2

)
, Ŵ2(n̂1, n̂2) = Ŵ1(n̂1 + 1, n̂2 − 1), (88)

and

exp(−iĈt) =
[

(cos μ̂1t − i	
2μ̂1

sin μ̂1t) λ1b̂
†
1b̂2

sin μ̂1t

μ̂1

−λ1
sin μ̂1t

μ̂1
b̂1b̂

†
2 (cos μ̂2t + i	

2μ̂2
sin μ̂2t)

]

, (89)

where we have used the abbreviations

μ̂2
j (n̂1, n̂2) = 	2

4
+ ν̂j (n̂1, n̂2), j = 1,2, (90)

ν̂1(n̂1, n̂2) = λ2
1n̂1(n̂2 + 1), ν̂2(n̂1, n̂2) = ν̂j (n̂1 + 1, n̂2 − 1). (91)

After we introduce an appropriate state for the above system we shall employ the results
obtained here to discuss the atomic inversion as well as the entropy squeezing. This will be
seen in the forthcoming sections.

5.2 Correlated Converter States and Density Matrix

Before we discuss the behavior of the atomic inversion through the collapse and revival phe-
nomenon, let us first derive the density matrix operator ρ̂(t) which we shall use to calculate
the atomic inversion. For this reason we consider at time t = 0 that the two-level atom is in
a coherent superposition state of the excited state |e〉 and ground state |g〉, such that

|θ,φ〉 = cos θ |e〉 + e−iφ sin θ |g〉, (92)

where φ is the relative phase of the two atomic levels and θ is the atomic coherence angle.
Here we may point out that when we take θ → 0 then the excited state can be found, while
for θ → π/2, then the wave function describes the atom in the ground state.

Now if we assume that at time t = 0 the system is in a pure state, such that the wave
function |ψ(0)〉 = |θ,φ〉 ⊗ |ξ, q〉, then for t > 0, the wave function takes the form

∣
∣ψ(t)

〉 = exp{−iŴ1t}
{(

cos μ̂1t − i	

2μ1
sin μ̂1t

)
cos

θ

2
+ λ1b̂

†
1b̂2

sin μ̂1t

μ̂1

× exp{−iφ} sin
θ

2

}
|ξ, q, e〉 + exp{−iŴ2t}

{(
cos μ̂2t + i	

2μ2
sin μ̂2t

)

× exp{−iφ} sin
θ

2
− λ1

sin μ̂1t

μ̂1
b̂1b̂

†
2 cos

θ

2

}
|ξ, q, g〉

= ∣
∣D(t), e

〉 + ∣
∣T (t), g

〉
. (93)

Where the states |D(t)〉 and |T (t)〉 are given by

∣
∣D(t)

〉 = exp
{−iŴ1(n̂1, n̂2)t

}{(
cos μ̂1(n̂1, n̂2)t − i	

2μ1(n̂1, n̂2)
sin μ̂1(n̂1, n̂2)t

)
cos

θ

2

+ λ1b̂
†
1b̂2

sin μ̂1(n̂1, n̂2)t

μ̂1(n̂1, n̂2)
exp{−iφ} sin

θ

2

}
|ξ, q〉, (94)
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and

∣∣T (t)
〉 = exp

{−iŴ2(n̂1, n̂2)t
}
{(

cos μ̂2(n̂1, n̂2)t

+ i	

2μ2(n̂1, n̂2)
sin μ̂2(n̂1, n̂2)t

)
exp{−iφ} sin

θ

2

− λ1
sin μ̂1(n̂1, n̂2)t

μ̂1(n̂1, n̂2)
b̂1b̂

†
2 cos

θ

2

}
|ξ, q〉. (95)

The time-dependent analytical solution for the density operator of final state of the system
may be written as follows

ρ̂(t) = ∣∣D(t), e
〉〈
e,D(t)

∣∣+∣∣T (t), g
〉〈
e,D(t)

∣∣+∣∣D(t), e
〉〈
g,T (t)

∣∣+∣∣T (t), g
〉〈
g,T (t)

∣∣. (96)

In what follows we employ the density matrix operator given above to investigate some
statistical properties of the field related to the present system, for example the atomic inver-
sion. This will be seen in the next section.

5.3 Atomic Inversion

As we have mentioned above the atomic inversion represents non-trivial physical quantity
which is defined as the difference between the probabilities of finding the atom in the exited
state and in the ground state. In fact discussion of the atomic inversion gives us a light on
the behavior of the atom-field interaction through the collapse and revival phenomenon. The
atomic inversion W(t) can be written as

W(t) = 1

2

{〈
D(t)

∣
∣D(t)

〉 − 〈
T (t)

∣
∣T (t)

〉}
. (97)

Using (94), and (95) together with (97) we have managed to plot Fig. 14 to discuss the
collapses and revival phenomenon related to the present system. For example we have plot-
ted the atomic inversion against the scaled time λ1t for different values of the coupling
parameter λ2 and the detuning parameter 	, keeping in mind that the atom is initially in the
excited state (θ = 0) and the field prepared to be in the correlated converter (finite dimen-
sional PCS) state with variable parameters q and ξ and fixed frequencies at ω1 = 0.8λ1 and
ω2 = 0.3λ1.

At exact resonance (δ = 0) with q = 10 and ξ = 3 while λ2 is zero, the function shows
irregular rapid fluctuations around zero (as should be expected) with its extrema between
∼ ±0.4 see Fig. 13(a). In the fluctuations of the atomic inversion in this case can be com-
pared with the case of a weak thermal field [144]. This is expected because when we plot
the photon distribution probability P (n,q − n) for the parameters ξ = 3, q = 10 it almost
resembles that case of a thermal field with n̄1 = 1.02 see Fig. 14(f). When the second field
coupling parameter is involved ( λ2

λ1
= 0.9) the general behavior of the function is not un-

changed markedly however it shows a slight decreasing in its amplitude. Moreover we can
observe that the fluctuations in this case have a slight interference between patterns com-
pared with the previous case. This may due to the presence of the coupling parameter λ2

which increases the energy exchange between the fields, see Fig. 13(b). Introducing the
field-field coupling results in adding detuning in the system, since from (80), (81), (85) we

can write the detuning parameter in the form 	 = δ+(ω2 −ω1)− (ω2−ω1)2−4λ2
2√

(ω2−ω1)2+4λ2
2

. This shows
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Fig. 13 The time evolution of the atomic inversion as a function of the scaled time λ1t , with the atom
initially in excited state (θ = 0) and the field is prepared in correlated converter state with fixed parameters
ω1/λ1 = 0.8, and ω2/λ1 = 0.3 (a) ξ = 3, q = 10, λ2 = 0, δ = 0, (b) ξ = 3, q = 10, λ2 = 0.9λ1, δ = 0,
(c) ξ = 3, q = 10, λ2 = 0.9λ1, δ = 5λ1, (d) ξ = 18, q = 50, λ2 = 0.9λ1, δ = 20λ1

Fig. 14 The photon distribution probability P(n,q − n) for the parameters (a) ξ = 3, q = 10, (b) ξ = 18,
q = 50

clearly the dependence of the detuning on the coupling λ2 and increasing its value results in
increasing the detuning, which in turn lowers the amplitude of the fluctuations and increases
its oscillations. Therefore we can adjust the different parameters to get any designed 	.

As soon as the detuning parameter is increased further (δ = 5λ1) the atomic inversion
shifts its value upward to fluctuate around 0.25, but with more interference between patterns
and fast oscillations. However, the general shape of the function is not changed markedly
see Fig. 14(c). Another interesting phenomenon can be observed when we increase the value
of both (q = 50) and (ξ = 18) even in absence of the detuning parameter 	. The plot for the
photon probability distribution P (n) = |〈n,q − n|ξ, q〉|2 resembles an almost Poissonian
distribution with n̄2 = 7.7 see Fig. 14(g). Hence the appearance of the collapse and the
first revival. However, the term of revival here can not be given by the formula for the
standard JCM (see [145]). As time develops another phenomenon starts to be exhibited. This
phenomenon is known as a superstructure phenomenon where we can see more building up
of irregular fluctuations with a strong interference between patterns. This means that if the
number of photons are increased in a correlated manner then the superstructure phenomenon
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may be observed. Moreover the collapse period in this case is too short and occurs nearly
after one set of the interaction. Also the function fluctuates around zero (as usual) where
	 = 0 and its amplitude reaches the extrema after considerable period of time see Fig. 13(c).
Finally when we have taken the second field coupling parameter λ2 into consideration as
well as the detuning parameter (	 = 17.9) see Fig. 13(d), the function is shifted upward and
fluctuates around ∼ 0.1 showing negative values on contrary to the case in which q = 10 and
ξ = 3 where the atomic inversion never reaches zero value at any period of time in Fig. 13(d).
The correlated converter finite dimensional PCS state this shows different behavior from the
behavior of the standard JCM in both cases of thermal or coherent fields. This is due to the
structure of this correlated state.

5.4 Entropy and Variances Squeezing

The argument for using entropic uncertainty relations for two-level system rather than the
Heisenberg uncertainty relations to investigate quantum fluctuations was recently discussed
in [146–151]. In quantum mechanical system with two physical observables represented by
the Hermitian operators Â and B̂ satisfying the commutation relation [Â, B̂] = iĈ, one can
write the Heisenberg uncertainty relation in the form

〈
(	Â)2

〉〈
(	B̂)2

〉 ≥ 1

4

∣∣〈Ĉ〉∣∣2
, (98)

where 〈(	Â)2〉 = (〈Â2〉−〈Â〉2). Consequently, the uncertainty relation for a two-level atom
characterized by the Pauli operators σ̂x , σ̂y and σ̂z, satisfying the commutation [σ̂x , σ̂y] =
i σ̂z can also be written as 	σ̂x	σ̂y ≥ 1

2 |〈σ̂z〉|.
Fluctuations in the component σ̂α of the atomic dipole is said to be squeezed if σ̂α satisfies

the condition

V (σ̂α) =
(

	σ̂α −
√∣

∣∣
∣
〈σ̂z〉

2

∣
∣∣
∣

)
< 0, α = x or y. (99)

In an even N -dimensional Hilbert space, the investigation of the optimal entropic un-
certainty relation for sets of N + 1 complementary observables with the non-degenerate
eigenvalues can be described by the inequality [148–151]

N+1∑

k=1

H(σ̂k) ≥ N

2
ln

(
N

2

)
+

(
1 + N

2

)
ln

(
1 + N

2

)
, (100)

where H(σ̂k) represents the information entropy of the variable σ̂k . On the other hand, for
an arbitrary quantum state the probability distribution for N possible outcomes of measure-
ments of the operator σ̂α is Pi(σ̂α) = 〈�αi |ρ|�αi〉, where |�αi〉 is an eigenvector of the
operator σ̂α such that σ̂α|�αi〉 = λ

αi
|�αi〉, α = x, y, z, i = 1,2, . . . ,N . The corresponding

Shannon information entropies are then defined as

H(σ̂α) = −
N∑

i=1

Pi(σ̂α) lnPi(σ̂α), α = x, y, z. (101)

To obtain the Shannon information entropies of the atomic operators σ̂x , σ̂y and σ̂z for a
two-level atom, with N = 2, one can use the reduced atomic density operator ρ̂(t). Thus we
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have the following expression,

H(σ̂α) = −1

2

[
ρα(t) + 1

]
ln

[
1

2

[
ρα(t) + 1

]
]

− 1

2

[
1 − ρα(t)

]
ln

[
1

2

[
1 − ρα(t)

]]
, α = x, y, z. (102)

Since the uncertainty relation of the entropy can be used as a general criterion for the
squeezing of an atom, therefore for a two-level atom where N = 2, we have 0 ≤ H(σ̂α) ≤
ln 2, and hence from (102), the Shannon information entropies of the operators σ̂x , σ̂y , σ̂z

will satisfy the inequality

H(σ̂x) + H(σ̂y) + H(σ̂z) ≥ 2 ln 2. (103)

In other words if we define δH(σ̂α) = exp[H(σ̂α)], then we can write

δH(σ̂x)δH(σ̂y)δH(σ̂z) ≥ 4. (104)

It is interesting to mention that the above inequality, was previously obtained and estab-
lished to be optimal. The fluctuations in component σ̂α (α = x or y) of the atomic dipole are
said to be “squeezed in entropy” if the Shannon information entropy H(σ̂α) of σ̂α satisfies
the condition,

E(σ̂α) = δH(σ̂α) − 2
√

δH(σ̂z)
< 0, (105)

where α = x or y.
The time dependent density matrix is given by ρα(t) = 〈ψ(0)|ρα(t)|ψ(0)〉, then after

some manipulations we can get the expression of the density matrix in the form

ρx(t) = 2Re
[〈∣∣D(t)

∣∣T (t)
〉]
, ρy(t) = 2Im

[〈∣∣D(t)
∣∣T (t)

〉]
,

ρz(t) = 〈
D(t)

∣
∣D(t)

〉 − 〈
T (t)

∣
∣T (t)

〉
, (106)

where |D(t)〉, |T (t)〉 defined by (94), (95) respectively.
In what follows we examine the temporal evolutions of the entropy squeezing as well as

variances squeezing related to the present system. We present several figures of the entropy
squeezing E(σ̂x) and E(σ̂y), and the variance squeezing factors V (σ̂x) and V (σ̂y), against
the scaled time λ1t for an initially excited atom (θ = 0). Furthermore we have considered
the field initially in correlated converter state with fixed values of the field frequencies (ω1 =
0.8λ1 and ω2 = 0.3λ1), however with various values of the other parameters.

For example, in Fig. 15 we have considered q = 10 and ξ = 3, and examined the system
at exact resonance such that δ = 0 and λ2 = 0. In this case we observe squeezing occur-
ring several times in the first quadrature E(σ̂x) where its maximum (minimum value of the
function) occurs approximately periodic in the considered interval of time. In the meantime
this phenomenon is absent from the second quadrature E(σ̂y), however we realize that the
maximum value of the entropy squeezing is fixed just above 0.05. On the other hand we
see squeezing strongly occurring several times in variance squeezing quadrature V (σ̂x) with
period longer than that of the entropy squeezing quadratures. This phenomenon is absent
from the second variance squeezing quadrature V (σ̂y). Also we may refer to the irregular
fluctuations in all quadratures and the patterns interference which is less pronounced in the
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Fig. 15 The time evolution of the entropy squeezing and the variance squeezing as a function of the scaled
time λ1t , with the atom initially in excited state (θ = 0) and the field is prepared in correlated converter
state with fixed parameters ω1/λ1 = 0.8, and ω2/λ1 = 0.3 and with parameters λ2 = 0, δ = 0, q = 10, and
ξ = 3 where (a) the entropy squeezing factor E(σ̂x); (b) the entropy squeezing factor E(σ̂y); (c) the variance
squeezing factor V (σ̂x); (d) the variance squeezing factor V (σ̂y)

variance squeezing factors V (σ̂x,y) than for the entropy squeezing E(σ̂x,y). We must note
here that for the coherent input [148–152] or two-mode nonlinear coherent states [153–155].

As soon as one takes the coupling parameter λ2 into consideration and adjusts the detun-
ing parameter 	 = 3 (Fig. 16) one can see that the entropy squeezing reduced its amount in
the first quadrature E(σ̂x) compared with the previous case, while there is squeezing in the
quadrature E(σ̂y) at some points. The variance squeezing factors in this case also acquire
squeezing, however with amounts less than the previous case. We note that for the vari-
ance squeezing, the squeezing in V (σ̂x) and the squeezing in V (σ̂y) alternate periodically in
Figs. 16(c) and 16(d). Clearly in this case the picture is even more distinct than the previous
investigations [146–155]. The investigation so far has considered the case of the state |10,3〉
which involved few photon state as P (n) shows.

When we increase the value of the parameters q = 50 and ξ = 18 corresponding to in-
creasing the mean photon numbers and the detuning parameter 	 to 17.8 as in Fig. 17 a
marked change occurs in both entropy squeezing and variance squeezing factors E(σ̂x,y)

and V (σ̂x,y). This can be seen in Fig. 17 where the squeezing is observed in E(σ̂x) and not
in E(σ̂y). Also the atomic system loses some of its energy to the system the squeezing of
all quantities starts in the entropies, but for the variances no squeezing appeared as observed
in Fig. 17. However the entropy squeezing and variance squeezing display fluctuations with
interference of patterns which reflects the effect of the Poissonian distribution as Fig. 17(b)
shows.

6 Conclusion

In this review we have discussed and proposed a scheme for generating a correlated two-
mode finite dimensional states in the vibrational motion of a trapped ion in two dimensional
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Fig. 16 As Fig. 15 but with δ = 5λ1

Fig. 17 As Fig. 15 but with q = 50, and ξ = 18 and δ = 20λ1

harmonic potential. These states generated by this scheme are stable because they appear in
a steady regime in which the ion has fully relaxed to its ground state. If the vibrational state
of motion of the ion is initially prepared in this state, then the steady state of the system is
a pure state given by a product of the atomic ground state with a state (4) of the vibrational
motion. In this case, the two parameters, ζ and q that characterize the two-mode finite
dimensional states are determined by the intensities and phases of the driving lasers, the
Lamb-Dicke parameter and by the sum of the phonon number of the two vibrational modes.
Based on recent technology techniques the present scheme could be realized experimentally
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[80, 81]. Quantum statistical properties of these states have been studied in detail. We have
found interesting nonclassical features of these states. The sub-Poissonian distribution and
the phase distribution were displayed for particular values of the parameters.

We have introduced new class of nonclassical states, which are referred as superposi-
tion of finite dimensional pair coherent states. Mathematically, these states are simultaneous

eigenstates of the operator (â†b̂ + ζ q+1(âb̂†)q

(q!)2 )2 and the operators that give the relative occu-
pation numbers of the two modes. Physically, these states can be produced by processes in
which there is a strong competition between a two mode parametric conversion. We have
considered some statistical properties of these states. For example, we have considered the
Glauber second-order correlation function g(2)(|ζ |), which shows that the state at j = 0 is
partially nonclassical for large values of the parameter q with respect to the first mode but
for the second is fully nonclassical for a short range of |ζ | for any values of q . The vio-
lation of Cauchy-Schwarz inequalities has been studied in detail. We found the violation
depends sensitively on j (j = 0,1), and the parameter q . The phase properties distribution
in the Pegg-Barnett approach applied to such states showed that it has a central peak and
two wings. We have obtained the formulae for the s-parameterized CF for such state. The
interference behavior in phase space for the Wigner function has been shown. Nonclassical
signatures for the states have been observed from negativity of Wigner function. Finally the
Q-function for some parameters is presented analytically and numerically. We found that
both of them are greatly effected with any variation in the parameter q and the parameter ζ .

Also in this work, we have studied an extension to a nonlinear finite-dimensional pair co-
herent state and proposed a scheme for generating in the vibrational motion of a trapped ion
in two-dimensional harmonic potential. These states generated by this scheme are stable be-
cause they appear in a steady regime in which the ion has fully relaxed to its ground state. If
the vibrational state of motion of the ion is initially formed in this state, then the steady state
of the system is a pure state given by a product of the atomic ground state with form (51) of
the vibrational motion. In this case, the three parameters, ζ , q and η, that characterize the
two-mode nonlinear finite-dimensional states are determined by the intensities and phases
of the driving lasers, the Lamb-Dicke parameter and by the sum of the phonon number
of the two vibrational modes. The effect of the nonlinearity function is shown for the sub-
Poissonian and phase distributions. The behavior of the sub-Poissonian distribution function
depends on the values of nonlinearity function and q parameter. Comparisons between the
nonlinear finite-dimensional pair coherent state and the standard finite-dimensional pair co-
herent state have been made for the different phenomena. These states may find applications
in the fields of quantum optics and quantum information.

We studied the finite dimensional state as the initial state for the system of a Hamiltonian
model that consists of two types of the interaction. The first kind is linear and represents
field-field interaction (frequency conversion), while the second kind is non-linear and rep-
resents atom-field interaction. Exact solution of the wave function is obtained. Also use the
density matrix from which we have managed to discuss the behavior of the atomic inver-
sion through the revival and collapses phenomena. The behavior of entropy squeezing and
variance squeezing factors are also considered. We found that both of them are drastically
effected with any variation in the detuning parameter and the second field coupling parame-
ter, as well as the mean photon numbers. The state of the field has its fingerprints clearly
on the shape of the squeezing parameters and differentiates it from other states as has been
discussed above.
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